Graduate School
University of South Florida
Tampa, Florida

CERTIFICATE OF APPROVAL

Master’s Thesis

This is to certify that the Master’s Thesis of

NINA SAXENA

with a major in Computer Science has been approved by
the Examining Committee on November 27, 1995
as satisfactory for the thesis requirement
for the Master of Science in Computer Science degree

Examining Committee :

Major Professor: N. Ranganathan, Ph.D.

Co-Major Professor: Sudeep Sarkar, Ph.D.

Member: Peter M. Maurer, Ph.D.

MAPPING AND PARALLEL IMPLEMENTATION OF BAYESIAN
BELIEF NETWORKS

by

NINA SAXENA

A thesis submitted in partial fulfillment of

the requirements for the degree of

Master of Science in Computer Science

Department of Computer Science & Engineering
University of South Florida

December 1995

Major Professor: N. Ranganathan, Ph.D.

DEDICATION

This thesis is dedicated to my parents —

Prof. M. K. Saxena and Dr. Bina Saxena.

ACKNOWLEDGMENTS

I would like to take this opportunity to thank my major professor Dr. N.
Ranganathan for his valuable guidance and understanding. It was from him that
I learned to be patient while facing problems and to be a true researcher. I wish
to thank my co-major professor Dr. Sudeep Sarkar for his relentless support and
help throughout this work. Without his invaluable suggestions, this work would
not have been possible. My thanks to Dr. Peter M. Maurer for his encouragement
and support. Finally, I would like to thank Dr. Sartaj Sahni of the Department of
Computer Science, University of Florida, Gainesville, for permitting me to work on

the nCUBE and James F. Hranicky for helping me time and again with the machine.

LIST OF TABLES

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF SYMBOLS AND ACRONYMS

ABSTRACT

CHAPTER 1.
CHAPTER 2.

CHAPTER 3.

CHAPTER 4.

INTRODUCTION

RELATED WORK

2.1.

2.2.

2.3.

Belief Networks

2.1.1. Evidential reasoning

Task allocation in communicating processors
2.2.1. Mapping on hypercubes

2.2.2. Tree mappmg

2.2.3. Message passing and deadlock free routing
Applications

2.3.1. Medicine

.3.2. Economy

3.3. Manufacturing

.3.4. Information Retrieval

3.5. General Systems

NEENENY

BAYESIAN NETWORK UPDATING

3.1.
3.2.

3.3.

Partitioning and separability
Bayesian computations

3.2.1. Network requirements
3.2.2. Belief updation

3.2.3. Lambda message

3.2.4. Pi message

3.2.5. Propagation technique

Pass reduction

3.3.1. Polytree Algorithm

3.3.2. Revised Polytree Algorithm

MAPPING AND IMPLEMENTATION

Breadth First Mapping

Adjacent Parent-Child Mapping

Adjacent Parent-Child Mapping with Load Balancing
4.3.1. Optimal load balancing

4.3.2. Basic algorithms for mapping

. Sequence ordering and deadlock prevention

iii
v
vi

vii

Ut Ot Ut

10

12
13
15
15
16
17
19
20

23
23
25
25
25
26
27
27
28
30

32
34
34
38
38
40
45

4.5. Processor organization

CHAPTER 5. RESULTS AND CONCLUSIONS
5.1. Performance evaluation
5.1.1. Analytical estimate of speedup
5.1.2. Results
5.1.3. Timing breakup
5.2. Comparison with related work
5.3. Future work

LIST OF REFERENCES

11

Table 1.

Table 2.

LIST OF TABLES

Computation breakup for the 22-node tree mapped onto a 2-d hy-
percube with direct evidence at Node 17

Comparison with other mapping approaches

11

59
60

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.
Figure 6.
Figure 7.
Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.
Figure 15.

Figure 16.

LIST OF FIGURES

An example Bayesian network with edges directed from causes to
effects

Mapping the Bayesian network of Figure 1 on a hypercube, network
shown with filled ovals and dark edges

Belief updating and propagation (a) Without check results, (b)
With check results C, (¢) With evidence E

Message passing between connected tasks T1 and T2 which are
mapped onto processors P1 and P2

A CPN for blood glucose concentration [26]
Forecasting gasoline prices [28]
Bayesian network for LPCVD of undoped polysilicon [29]

Information Retrieval for different topics using overlapping features

[30]
PIN used in visual process management [31]

Decomposition theorem conditions between 2 singly connected
parts A and B [15]

Status of node X, with parent W and children Y and 7, in an
inference network

Polytree algorithm : separate phases of network updation for each
evidence

Revised Polytree algorithm : a) Direct evidences, b) Up pass, c)
Down pass

A Bayesian tree with multiple parents as in node C

Conversion of the Bayesian tree to a levelled single-parent tree,
with node C as the pivot

Breadth first mapping; allocated hypercube node numbers are
shown within square brackets

v

14
16
17
18

19
21

24

26

29

30
33

33

Figure 17.

Figure 18.
Figure 19.

Figure 20.

Figure 21.

Figure 22.

Figure 23.

Figure 24.

Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.

Figure 33.

Adjacent parent-child mapping; allocated hypercube node numbers
are shown within square brackets

Step by step illustration of parent-child mapping

Adjacent parent-child mapping with alternate bit reversal; allo-
cated hypercube node numbers are shown within square brackets

Adjacent parent-child mapping with round robin rotation; allo-
cated hypercube node numbers are shown within square brackets

Step by step illustration of load balanced parent-child mapping

Hypercube showing round robin mapping of a complete binary tree
of height 4

Alternate bit reversal in a quarternary tree; allocated hypercube
node numbers are shown within square brackets

Round robin rotation in a quarternary tree; allocated hypercube
node numbers are shown within square brackets

The structure of a single Bayesian node [39]
Speedup vs Number of tree nodes for 1d cube
Speedup vs Number of tree nodes for 2d cube
Speedup vs Number of tree nodes for 3d cube
Speedup vs Number of tree nodes for 4d cube
Speedup vs Number of tree nodes for 5d cube
Speedup vs Cube dimension for a tree of 50 nodes
Speedup vs Tree height for a tree of 50 nodes

A Bayesian tree with 22 nodes

36
37

39

40
41

42

43

LFC

PFP

UP. BEL.
IR

CPN

PIN

CPp

LIST OF SYMBOLS AND ACRONYMS

Lambda From Child

Pi From Parent

Update Belief

Information Retrieval

Causal Probabilistic Network
Perceptual Inference Network

Conditional Probability

vi

MAPPING AND PARALLEL IMPLEMENTATION OF BAYESIAN
BELIEF NETWORKS

by

NINA SAXENA

An Abstract

Of a thesis submitted in partial fulfillment of
the requirements for the degree of
Master of Science in Computer Science
Department of Computer Science & Engineering
University of South Florida

December 1995

Major Professor: N. Ranganathan, Ph.D.

vil

Bayesian belief networks are used for graphically modeling uncertainty and
probabilistic dependence. They are useful in representing computations in systems
in which the decisions are conditionally dependent on different controlling factors.
Bayesian networks are applied in different fields including computer vision, object
recognition, feature detection, medicine, CAM and troubleshooting in systems. Since
most of the above applications are computationally intensive and require fast re-
sponse, parallel implementation of Bayesian networks is important. This thesis
presents a general technique of mapping tree structured Bayesian belief networks
onto the hypercube parallel processing archietecture. The proposed mapping scheme
maintains parent-child adjacency and single hop message passing throughout the com-
putation. The scheme is deadlock free since all the messages are received and pro-
cessed in the order of structural hierarchy of the nodes in a tree. The task allocation
is static and is done at the beginning of the computation. The scheme allows efficient
mapping of arbitrarily large trees onto a fixed size hypercube. Extensive simula-
tions were performed on a 64-node Silicon Graphics Hypercube machine. It is shown
that the overall speed up due to parallel computation depends on the height of the

Bayesian tree.

Abstract Approved:

Major Professor: N. Ranganathan, Ph.D.

Associate Professor
Department of Computer Science & Engineering

Date Approved:

Viil

CHAPTER 1

INTRODUCTION

In the field of knowledge based systems, uncertainty plays a crucial role. One
of the ways of managing this uncertainty is using the laws of probability theory.
However, the complete specification of a general probabilistic system is practically
cumbersome. This complexity arises from the need to specify a set of probabilities
whose size is exponential with the number of random variables.

Let P(xyq,...,x,) represent a knowledge base by a joint probability distribution,
on a set of binary random variables, a1, ..., x,,, then to store P(xy, ..., x,,) would require
2" entries. Computing P(z;|x;) which represents the confidence in z; given the state
of 2; would require computing P(x;x;)/P(z;). This would require the division of one
marginal probability by another, where each is individually generated by summing
up the probabilities for an exponentially large number of combinations. This compu-
tational burden can be significantly reduced if we can express the joint probability
density using a set of smaller conditional probabilities. This set depends on the direct
dependencies of each node. For example, let probability distribution P(Xy, ..., X7) be
factored as P(X7|Xo, X6) P(Xg| Xy, X5)P(X5)P(X4|X1)P(X;5]|X1)P(X32)P(X).

We can graphically represent this factoring using the graph in Figure 1. Each node
in the graph represents a random variable and the links denote direct dependencies
as specified in the joint probability factoring. The links denote the conditional prob-
abilities. The graph explicitly represents the underlying dependencies. This network
representation of the joint probability density is called a Bayesian network [1]. This

is also known as Belief network or causal network. Thus, a Bayesian network is a

2
directed graph whose nodes denote random variables and the links encode the depen-
dencies between the variables. The network structure also acts as a computational
backbone. Each node is a computational unit. The effect of a change in the be-
lief about a random variable P(z;) can be propagated to other variables using this

network structure.

Figure 1. An example Bayesian network with edges directed from causes to effects

Pearl [1] showed that if the Bayesian network is a directed acyclic graph then
there exists a very efficient probability updating algorithm which involves message
passing among the random variables. The updating algorithm is O(n) in the num-
ber of nodes. It may be noted that updating a general Bayesian network with no

topological restrictions is an NP-hard problem [2, 3.

3

Each node in a Bayesian tree is a variable in a Bayesian Network and can
acquire any value from a set of mutually exclusive states that together cover the
entire set of possible events. There can be two or more states for every variable. A
classic example of a variable with 2 states can be the " Yes-No” or the "True-False”
type. On the other hand, the status of a process in a machine can acquire more than

2 states such as "Running”, "Ready”, " Blocked” and ” Waiting”.

[6] [7]

X5 X2

[2] [3]

[O] [1]

X4

-

X1 X3

Figure 2. Mapping the Bayesian network of Figure 1 on a hypercube, network shown

with filled ovals and dark edges

This thesis describes a new task allocation scheme for mapping a Bayesian tree
onto a hypercube architecture. Figure 2 shows the mapping of the Bayesian network
shown in Figure 1 onto an eight-node hypercube. The belief network is denoted by

thick lines and the shaded nodes are marked as X1 to X6. The 3-dimensional hy-

4

percube is marked out by thin lines and the hypercube nodes are specified within
square brackets. Issues such as synchronization, preventing deadlock without much
busy-wait, load balancing and preserving functional integrity are considered. De-
pending on the specific application, the computational technique can be made to suit
a particular network structure [4, 5] or the nature of inferences to be drawn [6, 7].
This thesis focusses on parallelization of tree structured Bayesian network which is a
relatively simpler model than the more general Bayesian networks graphs.

The thesis is organized as follows. A brief literature survey is given in Chapter
2. Some real life applications briefly in this chapter. Chapter 3 discusses Bayesian
network updating. Mapping and implementation are discussed in Chapter 4. Finally,
Chapter 5 presents the results, comparisons with related schemes and suggestions for

further research.

CHAPTER 2

RELATED WORK

This thesis presents a task scheduling algorithm for mapping the computations
of a Bayesian network onto a message passing hypercube architecture. The first sec-
tion of this chapter introduces the Bayesian networks concepts. The second section
reviews task mapping schemes for hupercube that have been proposed in the litera-
ture. The last part of this chapter discusses different applications in which Bayesian

networks are used.

2.1. Belief Networks

Since the first introduction by Wright [8], significant amount of work has ap-
peared on Bayesian networks [9, 10, 11, 12, 1, 13, 14]. Pearl [1] showed that propa-
gating the effect of new evidence and updating of beliefs can be done very efficiently
using probabilistic measures on tree structured Bayesian networks. The following
section discusses evidential reasoning which involves the outcome of introducing new

evidences on different hypothesis within a problem domain.

2.1.1. Evidential reasoning

The concept of Bayesian network based reasoning and the associated method of
propagation can be understood from the following example adopted from [1]. There
was a theft in a town X by a masked thief. The police officer, chasing the thief,
witnessed the masked thief escaping in a train bound to town Y. The police suspected

3 people, only one of which was the thief. Since the escape was preplanned and the

(.28, .44,.28) (.269,. 461, .269)
B(.3,.7,.4) B(.3,.7,.4)

Figure 3. Belief updating and propagation (a) Without check results, (b) With check
results C, (¢) With evidence E

train was known to have prior reservation for every passenger, the reservation chart
was searched to identify the passengers. Let A stand for the identity of the man who
boarded the train in a mask, that is, the thief. Let B show the identity of the man
who boarded the train from town X and alighted at town Y. Let C be the reliability
of the check. The variables a, b and ¢ represent nodes A, B and C respectively.

By keeping in mind that it is very unlikely that 2 or all 3 of the suspects together

may have been travelling in the same train, we can construct a 3X3 conditional

=~

probability matrix, My,, such that

My, = P(bla) = 0.6 if a =bfor a,b=1,2,3 or
My, = P(bla) =02 if a # b for a,b=1,2,3.

Also, considering the check conducted for reservation to be very thorough and reliable,

we have
M., = P(c|b), such that 3. P(c|b) =1 for c=1,2,3.

This means that if the suspect B was on the train, then the chances of him being
reserved can be expected to be P(c|b).

Let the initial belief in the identity of the thief be
m(a) = (0.2,0.6,0.2).

Communication of information in Bayesian networks is through two types of
messages, called the lambda message and the ps message. A pi message is the message

sent from a parent node to its child node and is defined as
my(x) = P{x,et}

A lambda message is sent from the child to its parent. It can be defined as
Ay (x) = Ple |z}

Here, e~ denotes the evidences of the subtree with its root at node X and e™ denotes
the evidences from the rest of the tree. Hence, in Bayesian networks, lambda messages
for any node represent the probability of the existence of evidences for its child nodes.
Similarly, pi messages represent the probability of the existence of the node provided
the evidences for its parent nodes exist. Since the node B is a leaf node that has not
received any evidence, its belief value should be the same as its pi value. Hence, we

keep its lambda vector as (1,1,1) as shown in Figure 3a. Now,

7(b) = wp(a) My, = (0.2,0.6,0.2). My, = (0.28,0.44,0.28) = BEL(b).

Suppose that the check results now send their information through the lambda mes-

sage
Ac(b) = A(b) = $(0.3,0.7,0.4) as shown in Figure 3b.

Then, after belief updation, belief of node B becomes
BEL(b) = aA(b)7(b) = «(0.3,0.7,0.4)(0.28,0.44,0.28) = (0.167,0.611, 0.222),

where « is a constant for normalizing, such that the sum of all elements of BEL(Db)
comes to be 1.

Then, B sends a lambda message to A:
Ap(a) = My A(b) = 3(0.4,0.56,0.44).
Hence, A updates its belief to
BEL(a) = aX(a)m(a) = a(0.4,0.56,0.44)(0.2,0.6,0.2) = (0.159,0.667,0.174)

Hence, at this point of time suspect 2 is the most probable thief.
Let us say now that an evidence is found which reduces the chances of suspect
2 being the thief by a factor of 8, as depicted in Figure 3c. This evidence is thus

passed as a lambda message to node A of
Ap(A) = [5(8,1,8).
Hence,
Aa) = Ag(a)Ag(a) = 3(3.2,0.56,3.52).
Therefore,

BEL(a) = aa)r(a) = a(3.2,0.56,3.52)(0.2,0.6,0.2) = (0.381,0.2,0.419).

This causes the message
mp(a) = aig(a)m(a) = (0.16,0.6,0.16).

Then

m(b) = mp(a). My, = (0.2,0.6,0.2).M,, = (0.269,0.461,0.269).
So, for node B,
BEL(b) = aA(b)n(b) = «(0.3,0.7,0.4)(0.269, 0.461, 0.269) = (0.158,0.631,0.211).

This, thereby reduces the probability of suspect 2 being the thief to 0.631. Similarly,
a stronger external evidence may even change the probabilities so much as to make
someone else the prime suspect.

Thus we can consider an evidence as a perturbation at some point of the net-
work, the effect of which ripples through the entire tree. The exchange of information
is through lambda and pi messages that are from a child node to a parent node or
from parent to child respectively. Every time a node gets either a pi or a lambda
message, it updates its belief and then passes the revised values ahead to the other
neighbours, which follow the same pattern.

In the above scheme, updating for each evidence will involve message passing
over the entire network. Peot and Shachter [15] suggested handling multiple observa-
tions or evidences in two passes. A third pass is usually added, as the zero-th pass,
to probe for changes due to new evidence. The new method required each node to
be visited at the most twice, irrespective of the number of evidences. This algorithm
has been discussed in greater detail in Chapter 4 since it has been used for network

updation in the proposed work.

10

2.2. Task allocation in communicating processors

The problem of task allocation in any specific application is a very important
one and depends on the method of computation. Each parallel algorithm can have
several ways of being executed and its efficiency depends much on the way the task
allocation is done. It is therefore absolutely essential to have a task mapping strategy
that gives maximum benefit in terms of speed and cost. Since the literature on this
topic is rich, we only discuss those mapping approaches that are relevent to this work.

Some algorithms are mapped based on the critical path and completion time
constraints as in [16]. Since the order and times when each processor is active depends
on the flow of data, inter-dependencies and timing requirements, parallelism in any
problem can be fully utilized only when these factors are completely known. The task
mapping in Bayesian networks will be efficient if the computation behaviour as well

as the communication patterns are known to the algorithm.

2.2.1. Mapping on hypercubes

As stated in [17], the hypercube architecture is commonly preferred over other
communication networks since it has a small diameter and a large number of redun-
dant paths with very low hardware cost. Hence, it can be used for highly parallel
and communicating tasks. There are many works that deal with task mapping on
hypercubes, some of which are discussed below.

One of the major problems in task mapping is to reduce the communication
overhead. The main issues concerning task mapping in hypercubes are discussed in
[18] and [19]. The problem of mapping tasks to get minimum communication overhead
in every case is NP-complete [17]. The goal is to get an efficient mapping that leads
to less overhead and better run time. In a task graph, the nodes and the links of

the graph represent the computations and the communication paths. According to

11

Horiike [17], the communication cost of an algorithm is the sum of the products of the
amount of communication on each path and the path length. So, for an n-dimensional
cube, the algorithm proposed by Horiike has n stages. It starts with an initial stage
in which the tasks are mapped onto 2" 0-dimension cubes. Each k-th stage consists of
mapping the graph onto 2" k-dimension cubes such as to minimize communication
time.

In an n-dimensional hypercube, each processor is connected to n other proces-
sors. The processors adjacent to a specific processor all differ in just one bit with the
processor. Similarly, all processors at a distance d differ in d bits with the processor.
The hypercube structure is recursively constructed in that the n + 1-th cube is con-
structed by joining the corresponding links of two n-dimension cubes. It consists of

2" links. The mapping algorithm suggested in [17] is as follows:

Begin
for i = 0 to N-1 do begin
map task i onto Cy,;

end;

m = n;
fork =1ton do
begin
fori =0 to 2™ — 2 do begin
for j = 141 to 2™ — 1 do begin
compute a gain of Gy,j:

end;

12

end;
determine combinations;
fori =0 to N-1 do
begin
map task 1 into Cy;
map task 1 onto Py ;
end;

m=m - 1;

end:

End.

In the above algorithm, n is the dimension of the cube, k is the mapping stage
and m = n —k. Cj; stands for the 2™ k-dimension cubes and Py ;; are the 2k
processors. Gain Gy;; is the difference in communication costs between one stage and
the next, that is, the gain obtained on combining C}; and C ;.

Other criteria for mapping are Dilation Bound and FExpansion Ratio as men-
tioned in [20]. Dilation Bound is defined as the length of any edge in the graph after
mapping. Ezpansion Ratio is the ratio of the total number of functional links be-
tween processors to the number of edges in the graph. Hence, mapping is done either
to minimize the number of extra nodes used in support of intertask communication
or to minimize the cost factor of the effective distance between the nodes executing

adjacent tasks in the task graph.

2.2.2. Tree mapping

One of the very common structures of task graphs is that of a tree. A tree

represents the computations in many applications. Some algorithms suggest ” cluster-

13
mapping” for trees [21] [22]. They are based on partitioning the node set of a task

tree into clusters or groups and mapping these groups on to various processors.
However, such a scheme has the following constraints:

a) All computations and communications should be synchronized.

b) Any processor cannot communicate with another processor while computing.

¢) Communication between any processor-pair is unidirectional.

d) Each link can transmit no more than one value at a time.

e) Each task is executed only after all its child-tasks are executed.

Therefore the computation and communication times cannot be merged in the above

scheme.

2.2.3. Message passing and deadlock free routing

Special techniques are required for mapping tasks that require message-passing.
The task allocation should also be deadlock-free and optimal. Line ordering among
various processing elements is often used to prevent deadlocks as described in [23].
The paper aims at determining the Shortest Deadlock-Free Routing and defines a path
to be shortest deadlock-free (SDF) with respect to a coding scheme if it is the shortest
path between the source and the destination nodes and the sequence of nodes on the
path are monotonically increasing or decreasing in order.

There are some dedicated message passing models such as the CRAM or Com-
municating Random Access Machine [24]. Such models are constructed to optimize
scheduling, task granularity, synchronization and communication among processors.
Message passing between tasks has also been shown in [25] where two tasks with a
link from task T1 to task T2, as shown in Figure 4a, share process information by
sending and receiving data as shown in Figure 4b.

The scheme suggested by [20] requires multiple message hops between parent

and child nodes. It also requires the number of processors to be equal to or greater

14

——— | NPUT

TASK T1 Q PROCESSOR e

SEND TO
SUCCESSOR

A 4

RECEI VE
DATA

TASK T2 C) PROCESSOR @

~—— QUTPUT

a) b)

Figure 4. Message passing between connected tasks T1 and T2 which are mapped

onto processors P1 and P2

than the number of nodes in the task tree. Therefore, it is not good for Bayesian
networks because a large number of processors will be required to map the entire
tree and there will be a large communication overhead because of multiple hops for

each message. The method proposed in [17] has the same restrictions. The technique

15

described in [22] is not suitable due to the synchronization criterion required for
computation and communication. The proposed scheme, being free of the above

mentioned restraints, is thus suitable for Bayesian networks implementation.

2.3. Applications

Bayesian networks are used for various tasks such as price forecasting, manu-
facturing and processing, medicine, information retrieval and troubleshooting. This

section gives a brief overview of some of these applications.

2.3.1. Medicine

Human glucose metabolism knowledge can be encoded using the Bayesian net-
work shown in Figure 5 [26]. A priori insulin sensitivity is the main cause, along with
the absorption speed. Carbohydrate intake, blood glucose concentration and insulin
injections are also causes. The blood glucose concentration is a function of the present
glucose and insulin input as well as the past states, by setting up dependence links
from previous state to the outcome in the CPN or causal probabilistic network.

A similar concept is discussed in [27], where a non-uniform distribution of
prior probabilities is assumed and the network is initialized with a very high level of
glucose concentration and a very low level of insulin. The successive states evolve
from the incoming evidences. The rate of convergence of these parameters to normal
distributions gives the stability of the system.

As we can see, here fast computation is important for continuous monitoring,
and hence parallelization, is very important since the amount of drugs to be adminis-

tered has to be decided adaptively and continuously for terminal patients. The same

ABSORPTI ON

SPEED

\\‘

[~

16

CARBOHYDRATE
| NTAKE

\
CARBOHYDRATE CARBOHYDRATE
| NTAKE \ ‘ | NTAKE
BLOCD BLOOD
GLUCOSE GLUCOSE
CONCENTRATI ON CONCENTRATI ON

BLOOD
GLUCOSE
CONCENTRATI ON

I NSULI N
I NJECTI ONS

I NSULI N
I NJECTI ONS

Figure 5. A CPN for blood glucose concentration [26]

holds true for diagnosis during emergencies. The difference between the two situa-
tions is that in the former case, the effect is more important and in the latter case,

the cause.

2.3.2. Economy

While medical diagnosis is based on observations of symptoms to find the
already present disease, that is, it projects its knowledge base backwards to find out

the existing reason, forecasting is based on forward projection of the known factors

17
to presage a future event. Such a prediction is discussed in [28], where the price of

gasoline is predicted on the basis of oil import fee, gasoline tax and the tax impact

as depicted in Figure 6.

aL | MPORT
FEE

Figure 6. Forecasting gasoline prices [28]

Another example of such a forecasting can be the demand and supply forces in
the market, which depend on the following factors:
(1) Prevailing price level at the beginning of the term,
(ii) Duration of time over which the current price has prevailed,
(iii) Amount of increased demand,
(iv) World growth and
(v) Seasonality. The graph can be drawn similar to Figure 6 with link directions

depicting causation.

2.3.3. Manufacturing

Process modeling and dependence on various process parameters require an
adaptive decision-making architecture [29], shown in Figure 7. The same is required
for automating the process of setting the control parameters. The description of

one such application is given in [29] where "recipe synthesis” for stress, rate and

18
film thickness in LPCVD or Low Pressure Chemical Vapour Deposition of undoped

polysilicon is illustrated.

TEMP FLOW RATE POCSI T ON

PRESSURE

THI CKNESS

Figure 7. Bayesian network for LPCVD of undoped polysilicon [29]

Hence, a Bayesian graph for the LPCVD process is constructed which shows
the dependence of deposition rate on pressure, temperature, flow-rate, position and
time. The deposition rate in turn affects the film thickness. The above dependen-
cies are encoded by the links as shown in the figure. Belief networks are chosen to
depict such processes since they are able to create a more accurate model with lesser
information than other models. Moreover, the inclusion of uncertain and insignifi-
cant influences does not degrade the performance of the network. For example, the
LPCVD model can be made to include the effects of silane flow rate and the position
of the wafer, without any performance degradation, even though these do not have a
pronounced effect on the process. Here, again, parallelization could help in speeding

up computation since microscopic changes in the deposition rate can corrupt the chip

19

and render the entire expensive manufacturing process useless. Hence, the decisions

required to control the causal parameters should be made quickly.

2.3.4. Information Retrieval

Bayesian Networks have been applied in a multitude of computing tasks, such
as information retrieval or IR. IR systems are very popular in electronic systems as
an important means of exchanging information. On-line books, papers, news and

services are facilities that need information retrieval.

Figure 8. Information Retrieval for different topics using overlapping features [30]

According to [30], retrieving any information involves recognizing it on the basis
of specific representations where the features that are characteristic to the desired
topic are used to extract the topic. This is illustrated in Figure 8. Some of these
features may overlap as shown in the figure. It is similar to searching on the basis of
keywords, but requires additional conclusions based on the possibility of the existence
of phrases from the request in the relevant document. Bayesian networks are therefore
harnessed for handling these probabilities by including uncertainty and inference rules.

Information retrieval based on belief consists of the following steps:

a) Construct the network according to the nature of the request.

20

b) Extract the features from the document.

¢) Provide evidence to those features in the network.

d) Calculate the probability of the feature’s relevance to the document.

e) Rank the documents according to the computed probabilities.

The above method can also be used for topics with overlapping features.
Information Retrieval can be further applied to various real-world applications,

such as vision. A Perceptual Inference Network or PIN, shown in Figure 9, is used by

[31] to infer geometric structures. Each block becomes a node in the Bayesian tree.

Also, the entire tree can be hung from any pivotal node, for allotting numbers and

levels. In Figure 9, the "closed token” node has been selected as the pivotal node

and numbered 0. All other numbers represent the numbers allotted to the rest of the

nodes after hanging the tree from the pivot or root. Basic features such as parallel

lines, contours or strands act as evidence nodes, in the belief network and circles,

ellipses, parallelograms or triangles act as the hypothesis nodes.

2.3.5. General Systems

Debugging in software [32] and troubleshooting in all other general systems [33]
are essential for maintenance and repair. Software errors can be handled by analysis
of the operating system to create a graph of likelihoods of any feasible execution path
being erroneous. Similarly, the cause of these errors and the alternate paths that
the system can take also have a probabilistic attribute associated with them and,
therefore, can be best handled by Bayesian Networks.

Troubleshooting is an integral part of most systems and some of the most recent
products such as Microsoft Windows 95 employ Bayesian Networks for the task as
described in [34] and [35]. It can also be applied to day-to-day tasks such as finding
out the fault in a car engine that does not start [33]. In such a case, causes such as

alternator and fan belt will affect the amount of charge delivered, which will in turn

21

STRAND 1 CONSTANT CURVATURE | 2
SEGVENT

ER 6 [CLOSED TOKEN] ¢ 10

[L QRES] 3 OOR\ER g

[MXED CLOSED] 4 11 [QUADRI LATERAL | 12

ELLIPSE] 7 CIRE | 15| KYMEIRY 19 20
SYMVETRY
L \ |
18 [RADIAL RIBBON 9 [EQU LATERAL| 16 [TRAPEZOID] 17
SYMVETRY
, 22
ROLE| 14

PARALLELOGRAM | 21

Figure 9. PIN used in visual process management [31]

22

affect the battery power. The power is responsible for a number of other factors such
as the gas gauge and engine turn over, all of which can be causes of the stalling of
the engine.

The above serve as examples for Bayesian networks applications. They also
indicate how belief networks can be used for backward and forward projections or

just determining the state of the probabilistic environment.

23

CHAPTER 3

BAYESIAN NETWORK UPDATING

The parallel implementation of probabilistic networks is divided into two inter-
locking phases: (i) communication, or the message passing from one node to another
to convey the new lambda and pi values of a child or a parent respectively and (ii)
computation, or the calculation and updation of existing belief, lambda and pi values
on receiving a new message. Both phases alternate till all the nodes are updated and
the entire network attains steady state again.

In subsequent sections, we will see how these two phases are implemented on

a parallel machine without losing the overall integrity of the results obtained.

3.1. Partitioning and separability

The Decomposition Theorem stated in [15] proves the separability of a singly-
connected Bayesian graph. This concept is similar to the one described in [36] and
[37], which became the underlying principle for the HUGIN software. A graph is
"singly-connected” if each link in the graph has the property of separating the graph
into two separate and independent parts on being removed. In Figure 10, we can see
that A and B are two such parts of the same graph, joined by a single link. The
evidences have also been separated into e4 and eg. Communication between the two
parts is through two types of messages, called the lambda message and the pi message.
A pi message is the message sent from a parent node to its child node and is defined

as

ny(z) = P{r,es}

24

A lambda message is sent from the child to its parent. It can be defined as
Ay (x) = Pleg|A,ea,x} = P{egl|a}
Hence, we can see that, given X, B is conditionally independent of A and ey4, by the
following derivation.
P{x,e} = P{x,es,ep} = Pleplr,ea}P{x,ea} = Ay(x)ny(2)

Therefore, if the state and the conditional probabilities for the parent node in
a singly-connected Bayesian tree are known, we can determine the same for the child
without requiring any other information. The statistical properties of such a belief
network are, thus, distributable. This is very important because it guarantees that
the Bayesian network has inherent properties that makes it possible to render them

parallel.

Figure 10. Decomposition theorem conditions between 2 singly connected parts A
and B [15]

25

3.2. Bayesian computations

In the last section, we saw how we can compute the conditional probabilities
of any node depending on that of its Bayesian parents. In this section, we will see
the types of computations that are actually required to obtain external information

and update the entire network accordingly.

3.2.1. Network requirements

In a directed acyclic graph (DAG), there can be no clash of hierarchy, for there
cannot be a case where the child of any node is its own ancestor. Hence, we can
simply propagate all information by sending lambda and pi messages, in two straight
passes, bottom-up and top-down respectively.

A causal tree may be such that the nodes in it have multiple Bayesian parents
and multiple Bayesian children. However, for simplicity, we shall consider the case,
shown in Figure 11, which is similar to that in [1] where a node has several children but
only one parent. The computations can then be extended to accommodate multiple

parents.

3.2.2. Belief updation

Let evidence e be divided into two sets of evidences, ey being the set of evi-
dences for the sub-tree with its root at X and e} being the set of evidences for the
rest of the network. Then, e = ey U e¥. Now, for obtaining the belief of X, we

have

BEL(x) = Plxlef.cx)
= oP(exlet 0)Paled)

= aP(ex|2)Plalc}).

26

Figure 11. Status of node X, with parent W and children Y and Z, in an inference

network

Here, « = [P(ey,e%)] !, and is a constant used for normalizing. By generalizing,
we obtain that P(x|e) = aP(e|lx)P(z).

3.2.3. Lambda message

The lambda message that node X receives is

Aw) = Plexlo)
= Pley.eyl)

= Pleylr)P(ey]r).

If we consider Ay (x) = Pley|z) and A\z(x) = P(e,|x), then

AMax) = Ay (x)Az(x).

If X is an instantiated node, then it is assumed to have received a lambda mes-
sage of 1 from an imaginery child on receiving evidence, else it is assumed to have

received a lambda message of 0.

3.2.4. Pi message

The pi message that node X receives can be framed as

m(x) = P(xle)
— Z P(,T,|e")}, ?U)P('I.U|€—1)})

= Y P(a|w)P(wle}).

Ify, Plx

w) is stored as a matrix M,,, then the message sent to X from W is just

mx(w) = P(wle¥) giving

m(x) = Myupix(w).

3.2.5. Propagation technique

The belief of node X can be defined as

BEL(x) = aly(x)\z(x) X, Pla|w)pix(w).

This is the updated value obtained at node X after all the messages have been pro-

cessed. The belief for each of the other nodes can be similarly computed.

28

The general technique, therefore, is to update those nodes that receive direct
evidence, and then to update the rest of the network in two passes. The first pass
is the bottom-up pass, which allows all information to reach the root and merges all
new information into a common set of knowledge. The second or the top-down pass
then carries this common information down from the root to every node of the tree.
Both passes consist of a mixture of lambda and pi messages and, since the sense of
one pass is exactly the reverse of another, the links that are included in both passes

become pathways for both lambda and pi messages, one in each pass.

3.3. Pass reduction

Even though a node in a Bayesian tree can have multiple parents, the tree can
be converted into a single-parent, singly-connected tree by selecting a pivot node and
"hanging” the entire tree from the pivot node, which then becomes the root. This
was described in the previous chapter. The choice of the pivot depends on the user
and is usually based on balancing criteria. Thus, a node that is almost in the centre
of the largest diameter of the tree would be the choice for the pivot. This reduces
tree-updating time, since it ensures that no branch of the tree is unusually longer
than the others. On the basis of the structural parent of a node and its Bayesian
relation with the structural parent, specified by the user, the tree can be generated
in O(n) time, where n is the number of nodes in the Bayesian tree. Since it creates
the tree by attaching node by node and deciding the sense of the link to its parent,
it takes only 2n steps, to be precise. This is a considerable improvement over Pearl’s

method that takes O(n log n) time to construct the entire Bayesian tree.

S nlal

@%ﬂ%o
ﬁo

UaURUSURNOSUSSRRIRUSUR R
UNORU UNNYORS
Ul UaURUal

UaCROE SRR
SR U O
noo UnUnORS

V- SRR AL

Figure 12. Polytree algorithm : separate phases of network updation for each evidence

30
3.3.1. Polytree Algorithm

The Polytree algorithm for updating a tree, through propagation of informa-
tion, was that suggested by Kim [38] and Pearl [39]. In this method, once a node
received a message, it updated its own belief and then spread the new information si-
multaneously to all its neighbours, in all directions, irrespective of the hierarchy of the
neighbour in the tree. This is shown in Figure 12. The filled ovals represent updated
nodes and the thick arrows represent the current flow of information. Therefore, to
avoid clashes, this process had to be made sequential and each evidence was handled

separately. Hence, each node in a tree had to be visited once for every evidence.

a) b

OOyl

8y Calsl
-

-
(>
(- C > (@

UnOnl

(@ D

Figure 13. Revised Polytree algorithm : a) Direct evidences, b) Up pass, ¢) Down

pass

3.3.2. Revised Polytree Algorithm

According to Peot and Shachter’s revised method [15], the entire process of
updating the network can be completed in just two passes, one of which is downwards
and one upwards. When a node receives an evidence, it communicates the same to

the root, via the link through its parent. In this way, multiple evidences are handled

31

together and the combined information from different nodes reaches the root togather.
This eliminates the need for separately propagating the effect of each evidence. Once
the message reaches the root, the down pass begins in which all the nodes of the tree
are updated starting from the root and travelling down to the leaves. A "zeroth pass”
can sometimes be included, which is a downward pass, originating at the pivot or the
root, requesting all nodes for updated messages.

This is a revised form of the Polytree algorithm of simultaneous message prop-
agation in all directions of [38] and [39]. Here, since in the upward pass, all messages
have the same equi-sense, that is, they have the same direction of propagation, mul-
tiple evidences and observations can be combined in the same pass. The two passes
are depicted in Figure 13. The first part shows the evidence nodes, the second shows
the state of the tree after the upward pass and the third shows the state after the
downward pass. In Figures 12 and 13, only the structural hierarchy has been shown
and the Bayesian link directions are not specified since the passes are independent
of the Bayesian relations and depend only on the topological arrangement of nodes.
Therefore, multiple evidences can be introduced and processed simultaneously and each

node in the tree needs to be visited only twice, regardless of the number of evidences.

32

CHAPTER 4

MAPPING AND IMPLEMENTATION

For implementing Bayesian Networks on parallel machines, the mapping scheme
not only has to be efficient with respect to task scheduling and load balancing but
also with respect to the inter-node communication problems required in the network.
An intelligent mapping is necessary since each node in the parallel machine has to be
actively involved in message passing in order to update other nodes and spread new
information throughout the network whenever there is any change in probabilities
or states anywhere in the entire Bayesian setup. Therefore, the mapping should be
such as to minimize the distance that each message has to traverse before it reaches
its destination. Load balancing is desirable to maintain uniform utilization of each
processor and thereby speedup the computation through uniform task allocation.
Also, when the number of nodes in the Bayesian network is much larger than the
number of processors in the parallel machine, the task allocation must still maintain
all requirements for efficient processing.

The nodes A and B, in Figure 14, are Bayesian parents of node C. The nodes
D, E and F are Bayesian children of the node C. The tree is hung from a pivot or
root, as shown in Figure 15, so that each node has only 1 parent. Each node is
then named in breadth first order and the levels are assigned. Hence, for any node,
although the adjacency and neighbour information is preserved while transforming a
Bayesian tree into a single-parent tree, the parents and children of the Bayesian tree
may not necessarily correspond to the ones in the single-parent tree, requiring that

this information be stored separately.

33

/\/\

Figure 14. A Bayesian tree with multiple parents as in node C

@ (ROOT) LEVEL O

/ / / | \
/

Figure 15. Conversion of the Bayesian tree to a levelled single-parent tree, with node

C as the pivot

34

In the subsequent sections, we will see how a tree is mapped onto the processor.
Since the mapping is independent of Bayesian relations and depends only on the
topological order of the tree nodes, the figures in the following sections of this chapter
show only the topological hierarchy and the link directions in each tree. In each figure,
the small circles represent tree nodes, the numbers near them, that are not within
brackets, represent the corresponding node number in the tree itself. The numbers
within the square brackets give the binary encoding of the hypercube node in which

the specific tree node is stored.

4.1. Breadth First Mapping

The most uniform task allocation scheme would be a breadth first mapping of
the nodes of the Bayesian tree onto the nodes of the parallel machine, in sequence, as
shown in Figure 16. This would ensure that the number of tree-nodes per processor
differs at the most by one. Since in a probabilistic network, all the tree nodes are
actively involved in updating and message passing, a breadth first allocation of nodes
would also imply a fair division of storage and computation. However, this scheme
would not support fast communication since multiple hops would be required for
each message between one tree node and the next. It would, therefore, not only
slow down the entire network but also put extra load on each processor, by involving
more processors than required, for each instance of message passing. Most of these

processors would then be busy just relaying messages.

4.2. Adjacent Parent-Child Mapping

To reduce communication time and the number of relay processors, it is essential

to maintain parent-child adjacency when mapping the tree, as much as possible, on

35

[000]

LEV 0
0
001] [010]
O @, Lev 1
1 2
[011] [100] [101] [110]
O O O @, Lev 2
3 3 5 6
[111] [000] [001] [010] [011] [100] [101] [110]

@, @ (O Levs

7 3] 10 11 12 13 14

O O O O O O O O O O O O OO O O Owkva
15 16 17 18 19 20 21 22 23 24 75 76 27 78 29 30
[111] [000] [001] [010] [011] [100] [101] [110] [111] [000] [001] [010] [011] [100] [101] [110]

Figure 16. Breadth first mapping; allocated hypercube node numbers are shown

within square brackets

to the parallel machine. For a hypercube, therefore, it would be best to map the
tree such that the parent and children of any node are allocated to its immediate
neighbours. A good way of achieving this would be to assign the root (level 0) of the
tree always to Node 0 of the hypercube and then assign its children (level 1) to its
neighbours in a round robin fashion. This means that if the number of children is less
than the degree of the hypercube, then each neighbour stores at the most one child.
The first child is mapped on to the neighbour which differs from the root in only its
lowest bit. Subsequent children are then mapped in increasing order of differing bit,
as in Figure 17. When the number of children exceeds the degree of the hypercube,
then the rest of the children are wrapped up around the same neighbours, so each
neighbouring processor stores more than one child node. Hence, if m is the degree
of the hypercube and n be the number of children of a node, then each neighbouring

processor stores a maximum of n mod m and a minimum of (n mod m) — 1 child

36

nodes. This method is continued to map the rest of the levels in a similar fashion till

the entire tree is mapped. The steps are illustrated in Figure 18.

[000]

O Lev o
0
001] [010]
‘ LEV 1
1 2
[000] [011] [011] [000]
O O O Lev 2
3 Z 5 6
[001] [010] [010] [001] [010] [001] [001] [010]
@ @ (O Levs
7 8 9 10 11 12 13 14

O O O O O O O O O O O O O O O Owva
15 16 17 18 19 20 71 72 73 74 75 76 27 78 79 30
[000] [011] [011] [000] [011] [000] [000] [011] [011] [000] [000] [011] [000] [011] [011] [000]

Figure 17. Adjacent parent-child mapping; allocated hypercube node numbers are

shown within square brackets

The main advantage of this kind of mapping is that there would be no relay
processors involved since each message would traverse from its source to destination
via a single link. The scheme is simple and straight-forward and utilizes the structure
of the hypercube to implement the communication pattern in a Bayesian network.
However, in this approach, the load balancing may not be effective. There is a ten-
dency among the tree-nodes to be mapped on to the first few nodes of the hypercube,
due to the policy of mapping nodes on to neighbours obtained by varying one bit
each time, starting with the LS B or the smallest bit. Hence, the first child of Node 0
would be mapped on to Node 1 and the first child of Node 1 would again be mapped

on to Node 0 and so on. Ultimately, the higher number nodes of the hypercube would

STEP 1

O 0 (ROOT)

0, 3,6

[010]
2,8,9, 1194

[000] —
P
0,3,6

Figure 18. Step by step illustration of parent-child mapping

37

<
[001]
1,7,10,12, 13

38

have very few tree-nodes mapped on to them, while the lower number nodes have an

unfairly high share of computation and communication to do.

4.3. Adjacent Parent-Child Mapping with Load Balancing

To maintain load balancing, the scheme should be adjusted to for a uniform
variation of tree nodes over hypercube nodes. One way would be to determine the
next neighbour by varying bits alternately from the LSB or M SB at each level of
the tree. Thus by alternating at each level, the upper part of the hypercube can be
made to participate as much as the lower part. A more efficient way, though, would
be to change the starting bit also in a round robin fashion at every level. This would
mean that for the k-th level of a tree on an m degree hypercube, the starting bit
would be the (k mod m)-th bit instead of always being either the LSB or the MSB.
The two mapping methods are shown in Figures 19 and 20 respectively. Figure 21
illustrates load-balanced, round robin mapping and Figure 22 shows the status of
a three-dimensional hypercube at the end of a binary tree mapped using adjacent

parent-child mapping with round robin rotation.

4.3.1. Optimal load balancing

From the given figures, we can deduce two very important pieces of information.
One is that there cannot be a situation where consecutive levels of a tree get mapped
on to hypercube nodes belonging to the same group, except when the dimension is 0
as in sequential case. This follows from the fact that in any hypercube of dimension
greater than 0, there are two neat groups of equal number of nodes, each of which has
all its neighbour-nodes in the other group. The second is that half the nodes of the
hypercube will be repeated almost r times as frequently as the other half, in the round

robin method, r being the average number of children of a node. In the case of a

39

[000]

LEV 0
0
001] [010]
O @, Lev 1
1 2
[101] [011] [110] [000]
O O O @, Lev 2
3 3 5 6
[100] [111] [010] [001] [111] [100] [001] [010]
@, @ (O Levs
7 3] 10 11 12 13 14

O O O O O O O O O O O O OO O O Owkva
15 16 17 18 19 20 21 22 23 24 75 76 27 78 29 30
[000] [110] [011] [101] [110] [000] [101] [011] [011] [101] [000] [110] [101] [011] [110] [000]

Figure 19. Adjacent parent-child mapping with alternate bit reversal; allocated hy-

percube node numbers are shown within square brackets

complete tree, say tertiary, each node has 3 children, i.e., 7 is 3. The number of nodes
occuring at each level [would therefore be 3!, Hence, the frequency of occurance of
an odd level node is 1 + 3 + 3% 4+ 3° 4 37 ... and so on, which is approximately
3(1 + 32 + 3% + 3%). Similarly, the frequency of occurance of an even level
nodeis 1 + 1 + 32 + 3* + 3% ... and so on. Hence, one will be 3 times the other
depending on whether there is an odd number of levels in the tree or even.

Now we can derive a superior scheme by incorporating the advantages of above
schemes, that is, the alternate bit reversal scheme and the round robin scheme.

Here, we can see that the chances of repitition are lesser in the round robin
scheme, shown in Figure 23. This is so because in the alternate bit reversal scheme,
shown in Figure 24, changing the end bits often leads to a loop of the same nodes.
For example, nodes 0 and 5 lead to nodes 1 and 4 on changing the end bits (LSB or
MSB). Nodes 1 and 4, in turn, lead back to nodes 0 and 5 on changing the end bits.

40

[000]

LEV 0
0
001] [010]
O @, Lev 1
1 2
[011] [101] [000] [110]
O O O @, Lev 2
3 3 5 6
[111] [010] [001] [100] [100] [001] [010] [111]
@, @ (O Levs
7 3] 10 11 12 13 14

O O O O O O O O O O O O OO O O Owkva
15 16 17 18 19 20 21 22 23 24 75 76 27 78 29 30
[110] [101] [011] [000] [000] [010] [101] [110] [101] [110] [000] [011] [011] [000] [110] [101]

Figure 20. Adjacent parent-child mapping with round robin rotation; allocated hy-

percube node numbers are shown within square brackets

The same happens with nodes 3,6 and 2,7 too.
Hence, the last mapping scheme of round robin rotation at each level results
in an optimal combination of load balancing and communication. It is therefore the

most suitable for mapping Bayesian Networks onto hypercubes.

4.3.2. Basic algorithms for mapping

For mapping the tree nodes onto the hypercube nodes, we first need to have
an algorithm for assigning levels to the tree. This is due to the fact that for round
robin allocation over height, we need to change the order of allocation at each level.
The tree levelling algorithm is simple and needs just the parent-name of each node

to assign levels. It is as follows.

STEP 1 O 0 (ROOT)

Figure 21. Step by step illustration of load balanced parent-child mapping

41

42

6, 15, 22,

24, 29 7,14
[6] [7]
o 4,16,21, _ _ _ _ ~ TREE NODES
10, 11 23, 30 MAPPED
[4] [5]
3,17, 20,
2,8,13 26, 27

[2] [3]

0,5,18, 19,
25, 28 1,9,12

[0] [1]

Figure 22. Hypercube showing round robin mapping of a complete binary tree of
height 4

ALGORITHM : ASSIGN LEVEL
Begin

root.level = 0;
for (node = first to last) do
begin
node.level = node.parent.level + 1;

end;

End.

The mapping algorithm requires 2 masks; WidthMask is responsible for the

round robin rotation among the children of a node and HeightMask does the same for

43

‘ 0[000]

O 1[001] O 2[010] O 3[100] O 471001]

ONORONONONORORONORORONONONONONO
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
[101] [011] [000] [101] [110] [000] [011] [110] [000] [110] [101] [000] [101] [011] [000] [101]

Figure 23. Alternate bit reversal in a quarternary tree; allocated hypercube node

numbers are shown within square brackets

levels. The variable hnode corresponds to the hypercube-node number that will store
the specific tree-node. Following is the algorithm for load balanced Bayesian network
mapping.

ALGORITHM : LOAD BALANCED MAP

Begin

root.hnode = 0;
HeightMask = 1;
for (ParentNode = first to last) do
begin
WidthMask = HeightMask;
for (node = first to last) do

begin

44
if (node.parent == ParentNode)

begin
node.hnode = (ParentNode->hnode) EXOR
(WidthMask);
LeftRotate (WidthMask);

end;

end;

LeftRotate (HeightMask);

end;

End.

‘ 0[000]

. 1[001] ‘ 21010] ‘ 3[100] ‘ 41001]

OO 0000000000000 0
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
[011] [101] [000] [011] [000] [110] [O11] [000] [110] [0OO] [101] [110] [O11] [101] [000] [O011]

Figure 24. Round robin rotation in a quarternary tree; allocated hypercube node

numbers are shown within square brackets

The host uses the above algorithms to assigns levels to the tree, initialize the

network and then map on each node of the tree to a node of the parallel machine.

45

This is done in the beginning, prior to the parallel Bayesian computation and com-
munication. The mapping, therefore, is static mapping and needs to be done only
once for any network, making it easy to handle large probabilistic networks without

any major task allocation overheads.

4.4. Sequence ordering and deadlock prevention

In a typical message passing application, one of the greatest problems is that of
deadlock. Moreover, since all the processors work in parallel, it is also very important
to preserve the sequence in which information travels. An out-of-order message can
lead to erroneous computation and propagation of errors. At the same time, since
messages queue up in buffers, a message that is required first, say A, may arrive after
another that is required later, say B, in a parallel environment. This results in a
deadlock since the processor keeps waiting for the message it requires first, which is
A, which cannot be read because it is behind message B. At the same time, message
B is not read because it is required later and cannot be used out of sequence. A cycle
is thus created and the entire process stalls.

There is another case that can lead to a deadlock. This can occur during the
upward pass when a processor keeps waiting for a child to send a message to it, even
though that child has no message to send. It happens for the nodes that do not lie
on the shortest path between the root and the instantiated nodes that have received
direct evidence. A good way to avoid it is to keep a change flag that indicates if a node
is expected to change its belief in the bottom-up pass or not. All nodes initially have
their flags set to FALSE. The nodes that receive direct evidence turn their change
flag TRUE. Those that have not received evidence but are leaf nodes mark their flags
FALSE. The rest of the nodes wait for ”"change messages” from their child nodes and

turn their flags TRUE if any one of the child nodes has its flag marked as TRUE.

46

Deadlock, due to cycle formation, is prevented with the help of a receive flag.
To begin with, the receive flag of every processor is FALSE. In the bottom-up pass,
a processor sets its receive flag TRUE only when it has received messages from all
its topological children that indicate change. Only after the flag is TRUE can the
processor in turn send a message to its topological parent, after which it turns the
flag FALSE again. Similarly, in top-down pass, each processor sets the receive flag
TRUE when it receives a message from its parent and switches it to FALSE again
only after sending a message to all its children. This method also ensures the desired

sequence of information flow.

4.5. Processor organization

Storing and implementing Bayesian Networks requires dealing with three main
properties of the system; (i) probabilistic properties, (ii) structural properties and
(iii) communication properties. The structural properties are few and can be defined

by stating the following attributes for each node of the Bayesian graph :

a) Name of the node,
b) Total number and list of names of Bayesian Parents of the node,

c¢) Total number and list of names of Bayesian Children of the node.
Probabilistic properties consist of the following, for each vertex :

a) Number of possible states that can be attained,
b) Belief value,

¢) Pi value,

d) Lambda value,

e) Last Pi message from each parent,

f) Last Lambda message from each child,

g) Conditional properties corresponding to each state of each parent.

Only a single communication property is required, which is required for proper se-

quencing of message passing :
a) Receive flag.

These properties are stored as an entire structure in the processor memory.
Each processor stores the above properties for the tree nodes allocated to it. The
allocation can be either done by a separate host or by the nodes themselves. In the
latter case, each node of the hypercube separately decides which nodes it should store
according to the rules specified to it.

The general structure of a single processor is shown in Figure 25. This is similar
to the structure suggested by Pearl in [39] with an additional block, i.e., the ”change”
block added. Ap(A) is the lambda message sent from node B to its parent node A.
mp(A) is the pi message sent to node B from its parent node A. A\;(B), A\o(B),...
are lambda messages that node B receives from its children and m(B), m(B),...
are pi messages that it sends to its children. BEL(B) is the belief value of B. M
is the message matrix and M7 is its transpose. All the lambda messages coming
from the child nodes are multiplied together and the product is multiplied with the
existing message matrix, made up of the last lambda messages. The result is then
forwarded to the parent node as a lambda message. Pi messages are processed in a
slightly different way. The pi message coming from a parent node is multiplied with
the transpose of the message matrix, obtained from last pi messages. The result is
then scaled by a constant and multiplied with the lambda value to yield belzef. This
belief value is then divided by the lambda value of each child and scaled to get the pi

values to be sent to each child. The entire computation is done in accordance with

the rules described above.

48

CHANGE
EXTERNAL » MEMORY BLOCK
EVI DENCE
MESSAGE TO VESSAGE FROM
PARENT A PARENT A
(CR LAVBDA MEMORY BLOCK) (CR Pl MEMORY BLOCK)
- }X A S } (A |
M CHANGE MM
A |
M(B) n(B)
M, (B) | a(n) !
k g :
i u BEL:
(B)!
)\1 (B) }\2 (B) Y L 2 | i
BEL(B) BEL(E) | |
I) N ay o0 @ !
A (B Ao(B | !
1 2 ,
L _| _____________ | ______ 1' ______ ' _____________ ' _____ I
A (B) A, (B) v (B) m, (B)
MESSAGES FROM CHI LDREN OF B : VESSAGES TO CHI LDREN OF B
(OR LAVBDA MEMORY BLOCK) : (OR Pl MEMORY BLOCK)
PROCESSCR B

Figure 25. The structure of a single Bayesian node [39]

49
The function being performed by the processor depends on the category of the

node. For example, a leaf node of a tree can be instantiated or non-instantiated,
meaning, one that has received direct evidence and one that has not, respectively.
There is a topological root one or more Bayesian roots for every tree. The entire
network is initialized by assigning prior probabilities to these Bayesian roots, whereas
the topological root is responsible for termination on the up-pass and initiation of the
down-pass.

Apart from the above mentioned properties, a processor also needs to have
knowledge of the levels allotted to the tree nodes, the names of the nodes that receive
direct evidence and the tree nodes that lie on the shortest path between the evidence
nodes and the root, as described above. Even though it is primarily concerned with
the tree nodes that are allotted to itself, it keeps track of the processors that the
other tree nodes are assigned to also, for purposes of specifying destinations during
message passing. The data structure and size of the message buffer is also of primary

importance since that determines the processing efficiency of incoming messages.

50

CHAPTER 5

RESULTS AND CONCLUSIONS

This chapter deals with performance evaluation of the proposed scheme on the
basis of estimated and actual results. It then gives an overview of the contributions
of the work along with comparisons with other related schemes and suggests points

for future work.

5.1. Performance evaluation

The speedup obtained from the proposed scheme depends on a number of
factors such as the number of Bayesian parents and Bayesian children of each node
in the Bayesian tree, that is, the number of child nodes of the corresponding node in
the single-parent tree, the height of the single-parent tree and the dimension of the
hypercube. The first subsection gives an estimate of the expected speedup based on
theoretical analysis. The second subsection gives the actual results obtained.

The speedup of very large trees could not be found from direct simulation due
to machine problems and was therefore obtained by substituting the CPU timings
obtained from smaller trees, for the individual operations. Message passing time for

very large trees was also similarly estimated.
5.1.1. Analytical estimate of speedup
The expected speedup obtained by implementing the proposed scheme mainly

depends on the distribution of tree nodes over hypercube nodes. The analysis of the

same is as follows. Let n be the number of nodes in the Bayesian tree. Let the

51
average number of children for each tree node be k. Let the height of the Bayesian

tree after being hung from its pivotal node be h and the dimension of the hypercube
be d. Let n be the number of nodes in the tree. The child nodes of each tree
node are distributed over its hypercube neighbours in round robin fashion. Since
the total number of neighbours of any node in a d dimension hypercube id d, the
distribution is restricted by k or d, whichever is minimum. Hence, for each tree node,

its neighbouring processors will each store

mm’i('k’d) nodes. In a single level, [, there
are k'~! clumps. Now, since there is a heightwise round robin distribution in the
mapping too, the number of nodes that each processor stores goes down again by a
factor of min(h,d). Due to this reason, even though there are h levels, the repititions

in each processor will only be 7 Also, in a hypercube, the set of processors in

_h
min (h,d
a hypercube can always be divided into 2 non-overlapping sets such that no adjacent
processors belong to the same set. Hence, due to the adjacency and neighbourhood
criteria, alternate levels are mapped onto separate halves of the hypercube, which

increases the speedup by an additional factor of 2. The total speedup will therefore

be

S =0 ((2 X)/ (e X S0 K7 X m'mf(Lh,d)»'

Since, n = EI& k!, we can express speedup as

S =0 ((2 % 261 kl)/(k % 261 klfl x h)) -0 <2><min(k,d)><m'in(h‘d)>.

min(k,d) min(h,d) h

This speedup can also be expressed in terms of the number of processors, N by
substituting d with logs N .

It is to be noted that the above speedup gives only an average estimate and
not a lower or an upper bound, since the actual speedup for any tree may be greater
or lesser depending on the number of children of each individual node and the way

they are mapped on the different dimension cubes. Since the increase or decrease in

52

the number of evidences only adds a negligible amount to the overall time, its effect
can be neglected.

We can obtain the speedup that includes communication time by taking into
account the waiting time for each node. A node at level [waits for a time O(h) for
the entire information to reach node 0 in the up pass and then waits for time O(I)
for updation in the down pass. Since each message passing takes the same order of
time as the CPU time for the operations LFC-RECD, LFC-SENT, PFP-RECD or

PFP-SENT; and the number of such operations for a node of k children is 2 x (k+ 1),

2(k+1)+h+1

SETD) into the number of clusters at each level to obtain

we multiply the factor of

the overall speedup with communication overhead. Hence, the speedup now becomes

S = 0(@x T4k (G

h 2 /f+1 thtli-1 h
X Z 2(k+1) k mi’n(h,d)))'

ITHTL

In the worst case, that is when there is any direct evidence provided to the leaf nodes
at the lowest level, then | = h. This happens more often than not. The speedup

then becomes

2(k+1)+2h
S = ((2 X ¥4 kl)/(mm(m x ¥ A JZQL) X kT x min}(bh,d)))
_ 2xmin(k,d) xmin(h,d) X (k+1)
Or, § = O (Zminbdonnis).

5.1.2. Results

Figures 26 to 30 give the actual experimental speedup obtained for trees of
various sizes for cubes of dimension 1 to 5 respectively. Figure 31 shows the speedup
obtained by mapping a tree of 50 nodes onto cubes of various dimensions. In each
graph, the solid line denotes speedup obtained by considering only CPU time and the
dotted line denotes speedup obtained by considering the overall time including com-
munication. From the figures, we can see that the results reflect the trend predicted

by the analytical estimate.

Speedup

Speedup

Number of evidences = 4

5 T T T T T T T T
CcCPU ——
Overall -
4 + -
3+ —
2+ —
1 —
(o) 1 1 1 1 1 1 1 1

20 40 60 80 100 120 140 160 180 200
Number of nodes in Bayesian tree

Figure 26. Speedup vs Number of tree nodes for 1d cube

Number of evidences = 4

5 T T T T T ' ' I
CcCPU ——
Overall -~
. L .
S L .
S a
L .
(0] 1 1 1 | 1 1 L :

20 40 60 80 100 120 140 160 180 200
Number of nodes in Bayesian tree

Figure 27. Speedup vs Number of tree nodes for 2d cube

Speedup

Speedup

Number of evidences = 4

10 T T T T T T T T
CcCPU ——
Overall -
8 —
6 + —
4 + -
2+ —
(o) 1 1 1 1 1 1 1 1

20 40 60 80 100 120 140 160 180 200
Number of nodes in Bayesian tree

Figure 28. Speedup vs Number of tree nodes for 3d cube

Number of evidences = 4

T T T T T T T T
14 ~ CPU —— -
Overall -
12 -
8
6 + —
A e T
2+ —
(o) 1 1 1 1 1 1 1 1

20 40 60 80 100 120 140 160 180 200
Number of nodes in Bayesian tree

Figure 29. Speedup vs Number of tree nodes for 4d cube

Speedup

Speedup

Ot

Number of evidences = 4

10

20 40 60 80 100 120 140 160 180 200
Number of nodes in Bayesian tree

Figure 30. Speedup vs Number of tree nodes for 5d cube

Number of evidences = 4
T T T T
14 ~ CPU —— -
Overall -

2
Hypercube dimension

Figure 31. Speedup vs Cube dimension for a tree of 50 nodes

Ot

Number of evidences = 4
T T T T T T T
14 = CPU ——
Overall -

12

10

Speedup

5 55 6 6.5 7 7.5 8 8.5 9
Height of the tree

Figure 32. Speedup vs Tree height for a tree of 50 nodes

5.1.3. Timing breakup

In this section, we shall see the actual breakup of the timing and how it results
in the speedup that we see for various dimension hypercubes. Table 1 shows the time
taken by the nodes of a 22-node Bayesian tree, shown in Figure 32, mapped onto a 2
dimensional hypercube, with direct evidence provided to node 17 of the tree. Since
all the computation is done in belief updation on receiving a message or in fetching
values for sending a message, the table lists four different fields of CPU time, that is
1) LFC-RECD or lambda message received from a child,

2) LFC-SENT or lambda message sent to a parent,

3) PFP-RECD or pi message received from a parent,

4) PFP-SENT or pi message sent to a child.

The actual timings obtained for each of these operations are as follows. The time

taken for computations for the lambda messages to be sent ranges between 7778 X 50

57
nsec and 7788 X 50 nsec. Similarly, for pi messages sent, the time is usually between
22774 X 50 nsec and 22813 X 50 nsec. Once the messages are received, the program
takes from 12556 X 50 nsec to 12579 X 50 nsec for belief updation due to the lambda
messages and from 35062 X 50 nsec to 35084X 50 nsec for belief updation due to the
pi messages. Each message passing takes constant amount of time too, since only a
single hop is required in every case. In addition to this, each message passing requires
about 340401 X 50 nsec to 340488 X 50 nsec. Hence, in any cube of dimension 1 or
more, this time gets included too.

As seen from the table, the largest number of tree nodes get mapped on to
hypercube node 3. Hence, this processor, with tree nodes 3,5,6,8,16,17,18 and 21,
gives the worst case timing and hence is chosen for obtaining the speedup.

It has been noticed that best speedup shows up when:

a) The number of children of the nodes is close to a multiple of the dimension
of the hypercube.

b) The number of tree nodes is larger than the number of processors.

c) The tree has a slightly random nature. These trees map on with greater

load balancing than complete and fully balanced trees.

Hence, the algorithm works best for task trees of the usual everyday applications.
Sometimes, due to clustering of nodes with larger number of pi messages, the
speedup obtained for a dimension may turn out to be lesser than the previous dimen-
sion, since pi messages require more computation than lambda messages. However,
such cases are not very frequent since the lambda messages being sent and received
balance the pi messages out. Also, the problem depends on how and where direct

evidences are provided, so it tends to vary within the same tree.

58

Figure 33. A Bayesian tree with 22 nodes

5.2. Comparison with related work

Peot and Shachter’s "Revised Polytree algorithm” [15] reduces computation
by handling multiple evidences at one go. The proposed scheme, being a parallel
implementation of the Revised Polytree algorithm, can obtain a speedup over the one
obtained by a sequential implementation of the algorithm.

In mapping the Bayesian tree onto the parallel machine, this work employs

a strategy that is superior to the current task allocation strategies in the following

Table 1. Computation breakup for the 22-node tree mapped onto a 2-d hypercube

with direct evidence at Node 17

TREE LFC- | LFC- | PFP- | PFP- | CPU-TIME | HCUBE
NODE # | RECD | SENT | RECD | SENT | (X 50ns) | NODE #
0 1 0 0 2 58163.00
4 1 0 0 0 12563.00 0
7 1 1 1 3 123821.00
19 0 0 1 0 35072.00
1 0 2 1 1 73438.00
9 0 0 1 1 57878.00 1
10 0 0 1 0 35072.00
13 0 0 1 2 80700.00
2 1 3 1 1 93826.00
11 0 0 1 0 35085.00
12 0 2 2 0 85713.00 2
14 0 0 1 0 35077.00
15 1 0 0 1 35387.00
20 0 0 1 1 57875.00
3 1 0 0 1 35383.00
5) 0 0 1 2 80690.00
6 1 0 0 0 12567.00
8 1 1 0 0 55412.00 3
16 0 0 1 1 57880.00
17 1 0 0 1 35319.00
18 0 0 1 0 35068.00
21 0 0 1 0 35851.00

ways. The approach in [20], if applied to Bayesian networks, would require multiple
message hops between parent and child nodes. However, the proposed approach
maintains adjacency properties when mapped and thus requires only single message
hop throught the network. Hence, the Dilation Bound, defined in Chapter 2 as the
number of interprocessor links required to map an edge of the task tree, remains
constant at 1. Also, since the technique discussed in this thesis allows mapping
of Bayesian trees with a large number of nodes onto a relatively smaller number

of processors, the Ezpansion Ratio, also explained in Chapter 2 as the ratio of the

60

number of processors to the number of tasks, is usually lesser than 1. The proposed
scheme also has an advantage over the one suggested in [17] based on the minimization
of communication overhead. By maintaining adjacency, we reduce the total message
traffic on the parallel machine links. Mapping multiple tasks on single processors
has been described in [22], which uses cluster mapping for the same. However, the
method given in the paper requires the computation and the communication to be
done at separate times and to be fully synchronized. The present work, however, was

implemented free of these restrictions. Table 2 summarizes the above comparisons.

Table 2. Comparison with other mapping approaches

Method/ Number of hops Ratio of Synchronization
scheme for messages tasks to requirement for
between hypercube computation and
adjacent nodes processors communication
Kavianpour and Multiple Less than or Not reqd.
Bagherzadeh’s equal to 1
Horiike’s Multiple Less than or Not reqd.
equal to 1
Kawaguchi, Nomne within a | More than or Required
Tamura and cluster; multiple equal to 1
Utsumiya’s between clusters
Proposed Single Almost always Not reqd.
more than 1

5.3. Future work

This thesis mainly concerns itself with static mapping. However, dynamic map-
ping can vield very good results if the sequence of message passing and communication

is maintained. Apart from this, with the use of dynamic mapping, the network will

61

need extra storage to maintain the current status of each node and computation stage.
Hence, a good area of future work can be to have an intelligent dynamic mapping
that takes care of the above mentioned factors.

Another scope of improvement appears in the grouping of nodes. An efficient
way of separating the nodes with a large number of pi messages will remove anamolies
such as a larger dimension having lesser speedup than the smaller dimension. Also,
this thesis only considers tree structured Bayesian networks. Hence, one may want
to extend the work to cover other graphs too.

Since the overhead in implementing Bayesian networks on parallel machines
like hypercubes can be very large, a VLSI chip can be developed which handles
all the message passing efficiently so as to reduce overall time. Message passing
can sometimes become a problem due to queueing up of messages in the processor
buffers. Hence, it requires a setup in which there are separate memory blocks for each
message type within each processor. A design of this kind eliminates the need for a
FIFO buffer, on each processor, to store the different messages. In this way, messages
will not have to queue up in the processor buffers. This will reduce the waiting time.

Since Bayesian belief networks have a large number of applications, there is a
great scope of specific application-based architectures too that can yield better results

by exploiting the knowledge of the structure of the task graph.

62

LIST OF REFERENCES

[1] J. Pearl, Probabilistic Reasoning in Intelligent Systems : Networks of Plausible
Inference. San Mateo, California: Morgan Kaufmann Publishers, first ed., 1988.

[2] G. Cooper, “Computational complexity of probabilistic inference using bayesian
belief networks (research note),” Artificial Intelligence 42, pp. 393-405, 1990.

[3] P. Dagum and M. Luby, “Approximately probabilistic reasoning in bayesian
belief networks is np-hard,” Artificial Intelligence, pp. 141-153, 1993.

[4] D. E. Heckerman, “A tractable algorithm for diagnosing multiple diseases,” Ar-
tificial Intelligence, pp. 174-181, 1989.

[5] H. J. Suermondt and G. F. Cooper, “A combination of exact algorithms for
inference on bayesian belief networks,” Int. J. Approximate Reasoning, pp. 521—
542, 1991.

[6] K. Ramamurthi and A. M. Agogino, “Real time expert system for fault tolerant
supervisory control,” Computers in Engineering, pp. 333—-339, 1988.

[7] R. D. Shacter, S. K. Anderson, and K. L. Poh, “Directed reduction algorithms
and decomposable graphs,” Artificial Intelligence, pp. 237-244, 1990.

[8] Wright, “Correlation and causation,” Journal of Agricult. Research, 20, pp. 557
585, 1921.

[9] J. Pearl, “Evidential reasoning using stochastic simulation of causal models,”
Artificial Intelligence 33, pp. 173-215, 1987.

[10] J. Pearl, “On evidential reasoning in a hierarchy of hypotheses,” Artificial Intel-
ligence 28, pp. 9-15, 1986.

[11] J. Pearl, “Distributed revision of composite beliefs,” Artificial Intelligence 29,
pp- 241288, 1986.

[12] J. Pearl, “Embracing causality in default reasoning,” Artificial Intelligence 35,
pp. 259-271, 1988.

[13] D. Heckerman, A. Mamdani, and M. P. Wellman, “Introduction (bayesian net-
works),” Communications of the ACM, pp. 24-26, March 1995.

[14] D. Heckerman, “A tutorial on learning bayesian networks.” Technical Report,
March 1995.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

63

M. A. Peot and R. D. Shachter, “Fusion and propagation with multiple observa-
tions in belief networks (research note),” Artificial Intelligence 48, pp. 299-318,
1991.

K. R. Pattipati, T. Kurien, R.-T. Lee, and P. B. Luh, “On mapping a track-
ing algorithm onto parallel processors,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 26, pp. 774791, September 1990.

S. Horiike, “A task mapping method for a hypercube,” Systems and Computers
in Japan, vol. 22, no. 9, pp. 14 22, 1991.

W. K. Chen and E. F. Gehringer, “A graph oriented mapping strategy for a
hypercube,” 3rd Hypercube Concurrent Computers and Applications, pp. 200—
209, 1988.

F. Ercal, J. Ramanuja, and P. Sadayappan, “Task allocation onto a hypercube

by recursive mincut bipartitioning,” $rd Hypercube Concurrent Computers and
Applications, pp. 210 221, 1988.

A. Kavianpour and N. Bagherzadeh, “A systematic approach for mapping appli-
cation tasks in hypercubes,” IEEE Transactions on Computers, vol. 42, pp. 742—
746, June 1993.

T. Kawaguchi, “Static allocation of a task tree onto a linear array,” IEEE Inter-
national Symposium on Circuits and Systems, vol. 3, no. PART 3/40, pp. 1921
1924, 1993.

T. Kawaguchi, Y. Tamura, and K. Utsumiya, “A task mapping algorithm
for linear array processors,” IEICE Transactions on Information and Systems,
vol. E77-D, pp. 546 554, May 1994.

M.-S. Chen and K. G. Shin, “Subcube allocation and task migration in hyper-
cube multiprocessors,” IEEE Transactions on Computers, vol. 39, pp. 1146-1155,
September 1990.

A. Sivasubramaniami, U. Ramachandran, and H. Venkateswaran, “A computa-
tional model for message-passing,” IEEFE Proceedings of the International Con-
ference on Parallel Processing, pp. 358-361, 1992.

K. H. Kim and A. Kavianpour, “A distributed recovery block approach to fault-
tolerant execution of application tasks in hypercubes,” IEEE Transactions on
Parallel and Distributed Systems, vol. 4, pp. 104-111, January 1993.

O. K. Hejlesen, S. Andreassen, and S. K. Andersen, “Implementation of a learn-
ing procedure for multiple observations in a diabetes advisory system based on
causal probabilistic networks,” in Artificial Intelligence in Medicine, Munich:

IOS Press, 1993.

27

28]

[29]

[30]

31]

[33]

(34]

[33]

[36]

37]

[38]

[39]

64

U. G. Oppel, A. Hierle, L. Janke, and W. Moser, “Transformation of compart-
mental models into sequences of causal probabilistic networks,” in Artificial In-
telligence 1 Medicine, Munich: 10S Press, 1993.

B. Abramson, “The design of belief network-based systems for price forecasting,”
Computers Elect. Engng., vol. 20, no. 2, pp. 163 180, 1994.

F. Nadi, A. M. Agogino, and D. A. Hodges, “Use of influence diagrams and neural
networks in modeling semiconductor manufacturing processes,” IEEE Transac-
tions on Semiconductor Manufacturing, vol. 4, pp. 52 58, February 1991.

R. Fung and B. D. Favero, “Applying bayesian networks to information re-
trieval,” Communications of the ACM, pp. 42—48, March 1995.

S. Sarkar and K. L. Boyer, “Using perceptual inference networks to manage vision
processes,” Computer Vision and Image Understanding, vol. 62, pp. 27-46, July
1995.

L. Burnell and E. Horvitz, “Structure and chance : Melding logic and probability
for software debugging,” Communications of the ACM, pp. 31 41, March 1995.

D. Heckerman, J. S. Breese, and K. Rommelse, “Decision-theoretic troubleshoot-
ing,” Communications of the ACM, pp. 49-57, March 1995.

D. Heckerman, J. Breese, and K. Rommelse, “Troubleshooting under uncer-
tainty.” Technical Report, January 1994.

D. Heckerman and R. Shachter, “Decision-theoretic foundations for causal rea-
soning.” Technical Report, March 1994.

F. V. Jensen, S. L. Lauritzen, and K. G. Olesen, “Bayesian updating in recursive
graphical models by local computations,” Comput. Stat. ()., 1990.

F. V. Jensen, K. G. Olesen, and S. K. Andersen, “An algebra of bayesian belief
universes for knowledge based systems,” Networks, 1990.

J. H. Kim and J. Pearl, “A computational model for casual and diagnostic rea-
soning in inference engines,” Proceedings I[JCAI-83, 1983.

J. Pearl, “Fusion, propagation and structuring in belief networks,” Artificial

Intelligence 29, pp. 241-288, 1986.

